Периодическая система химических элементов: как это работает

Применение

Сплавы

Сплавы на основе магния являются важным конструкционным материалом в авиационной и автомобильной промышленности благодаря их лёгкости и прочности. Цены на магний в слитках в 2006 году составили в среднем 3 долл/кг.

Химические источники тока

Магний в виде чистого металла, а так же его химические соединения (бромид, перхлорат) применяются для производства очень мощных резервных электрических батарей (например магний-перхлоратный элемент, серно-магниевый элемент, хлористосвинцово-магниевый элемент, хлорсеребряно-магниевый элемент, хлористомедно-магниевый элемент, магний-ванадиевый элемент и др), и сухих элементов (марганцево-магниевый элемент, висмутисто-магниевый элемент, магний-м-ДНБ элемент и др). ХИТ на основе магния отличаются очень высокими значениями удельных энергетических характеристик и высоким разрядным напряжением. В последние годы в ряде стран обострилась проблема разработки аккумулятора с большим сроком службы, так как теоретические данные позволяют утверждать очень большие перспективы его широкого использования (высокая энергия, экологичность, доступность сырья).

Огнеупорные материалы

Оксид магния MgO применяется в качестве огнеупорного материала для производства тиглей и специальной футеровки металлургических печей.

Перхлорат магния, Mg(ClO4)2 — (ангидрон) применяется для глубокой осушки газов в лабораториях, и в качестве электролита для химических источников тока с участием магния.

Фторид магния MgF2 — в виде синтетических монокристаллов применяется в оптике (линзы, призмы).

Бромид магния MgBr2 — в качестве электролита для химических резервных источников тока.

Медицина

Оксид и соли магния применяется в медицине (аспаркам, сульфат магния, цитрат магния, минерал бишофит). Бишофитотерапия использует биологические эффекты природного магния в лечении и реабилитации широкого круга заболеваний, в первую очередь — опорно-двигательного аппарата, нервной и сердечно-сосудистой систем.

Фотография

Магниевый порошок с окисляющими добавками (нитрат бария, нитрат аммония, перманганат калия, гипохлорит натрия, хлорат калия и т. д.) применялся (и применяется сейчас в редких случаях) в фотоделе в химических фотовспышках (магниевая фотовспышка).

Польза и вред добавок

Чистый магний ковкий, легкий металл. Только есть у металла свойство — подверженность коррозии. Потому чистый металл используют редко, в отличие от его сплавов. Для сплавов магния очень важны добавки алюминия, циркония, цинка.

Алюминий делает сплав прочнее и удобнее для литейных работ.

Количество лигатуры важно для качеств сплава:

  • 3% алюминия придадут наибольшую пластичность;
  • 6% лигатуры — даст лучшие прочность и пластичность;
  • 9% алюминия подарит сплаву максимальную прочность.

Свойства цинка в сплавах подобны алюминиевым:

  • 3% добавка максимально увеличивает пластичность;
  • 5% цинка даст гармоничное сочетание пластичности и прочности сплава;

Если в сплаве есть вредные примеси (никель, железо), то лигатура цинка повысит коррозионную стойкость.

Кремний повысит способность к литью, но в присутствии железа уменьшит устойчивость к ржавчине.

Никель и железо примеси вредные, они делают сплав подверженным ржавчине.

Сплавы магния делят на деформируемые (МА) и литейные (МЛ); последние применяются значительно чаще. В сплав МЦИ добавляют медь, железо, цинк, никель. Эта смесь металлов хороша при вибронагрузках.

Область применения

Магниевые сплавы обладают рядом полезных свойств, которые не обеспечивают другие материалы. Эти свойства обеспечивают широкое использование в промышленности:

  • хорошей переносимость низких, нормальных и высоких температур;
  • низкой плотностью;
  • высокой удельной прочностью;
  • способностью поглощать удары и вибрации;
  • хорошими показателями к обработке резанием.

Исходя из свойств, сплавы магния находят применение:

  • в производстве автомобилей – для создания деталей машин (картер, поддон);
  • самое основное применение — изготовление колёсных дисков;
  • в сельхозмашиностроении – для изготовления картеров двигателей, коробок передач, барабанов колёс;
  • в электротехнике и радиотехнике – для создания корпусов приборов и элементов электродвигателей;
  • в производстве оптических приборов – для изготовления корпусов биноклей, подзорных труб, фотоаппаратов;
  • в лёгкой промышленности – для изготовления бобин, шпулек, катушек;
  • в полиграфии – для изготовления матриц, клише, валиков; — в судостроении – для изготовления протекторов;
  • в авиастроении и ракетостроении – для изготовления деталей шасси, деталей управления, крыла, корпуса самолёта.

С развитием технологий сплавы магния получат дополнительные области применения. Тенденция к облегчению массы готовых изделий уже сейчас регулярно повышает интерес к этим сплавам. Если учитывать, насколько стремительными темпами развиваются робототехника, производство компьютеров, различных гаджетов, то можно понять, что потребность в магниевых марках металлов ограничится только количеством добываемого магния.

Современная домашняя лаборатория

В современных условиях отличить серебро от подделки можно и дома. К услугам людей сейчас достижения физики, наборы юного химика, медицинские препараты. Просто нужно знать, как применить тот или иной способ.

Просто и быстро

Переходящий из века в век способ — царапнуть внутреннюю сторону колечка иголкой. Когда это удается слишком легко, а под верхним слоем обнаруживается другой оттенок, налицо подделка с напылением. Но сейчас мошенники умеют делать фальшивки, которые пройдут такой примитивный тест.

Есть более надежные домашние способы:

  1. Уксус. Процарапать ободок кольца. Капнуть уксусом (подальше от камней). Если появится зеленая пенка, то изделие, скорее всего, поддельное.
  2. Ляпис. Он содержит ионы Ag. Работать нужно в перчатках. Потереть ляписом украшение и понаблюдать за реакцией. Нормальный сплав продемонстрирует ее отсутствие. Фальшивка почернеет.
  3. Серная мазь. Нанести ее на изделие и оставить на 2−3 часа. Затем протереть украшение и сполоснуть его. Аргентум станет темным. Подделка, в зависимости от использованных металлов, либо не среагирует, либо даст желтый, розовый или зеленоватый оттенок.
  4. Йод. Понадобится белая тарелочка. Положить на нее изделие. Капнуть йодом. Если нет реакции, аргентум ненастоящий (возможно, под его видом приобретен мельхиор). Появилось синее пятно — много цинка. Чернота определяет качественное украшение.
  5. Мел (подойдет обычный белый). Кольцо или цепочку нужно сильно им потереть. Если украшение чернеет, оно содержит достаточно Ag.
  6. Магнит. Серебро не примагнитится. Но это не очень верный метод — некоторые металлы среагируют так же. Зато этот способ может дать эффект, когда звенья цепочки изготовлены из разных сплавов. Частью украшение будет притягиваться, а частью — нет.
  7. Лед. Положить его кусочек на украшение, которое хранилось при комнатной температуре либо только снято с руки. Если лед сразу начинает таять, это является хорошим показателем.

Химические свойства

При нагревании на воздухе магний сгорает с образованием оксида и небольшого количества нитрида. При этом выделяется большое количество теплоты и света:

Магний хорошо горит даже в углекислом газе:

Раскаленный магний энергично реагирует с водой, вследствие чего горящий магний нельзя тушить водой:

Mg + H2O → MgO + H2 + 75 kcal

Щелочи на магний не действуют, в кислотах он растворяется с бурным выделением водорода:

Смесь порошка магния со взрывом реагирует с сильными окислителями, например с сухим перманганатом калия.

Также следует упомянуть реактивы Гриньяра, то есть алкил- или арилмагнийгалогениды:

Металлический магний — сильный восстановитель, применяется в промышленности для восстановления титана до металла из тетрахлорида титана и металлического урана из его тетрафторида

История открытия

В 1695 году из минеральной воды Эпсомского источника в Англии выделили соль, обладавшую горьким вкусом и слабительным действием. Аптекари назвали её «горькой солью», а также «английской» или «эпсомской солью». Минерал эпсомит представляет собой кристаллогидрат сульфата магния и имеет химическую формулу MgSO4 · 7H2O. Латинское название элемента происходит от названия древнего города Магнезия в Малой Азии, в окрестностях которого имеются залежи минерала магнезита.

В 1792 году Антон фон Рупрехт выделил из белой магнезии восстановлением углём неизвестный металл, названный им австрием. Позже было установлено, что «австрий» представляет собой магний крайне низкой степени чистоты, поскольку исходное вещество было сильно загрязнено железом.

В 1808 г. английский химик Гемфри Дэви с помощью электролиза увлажнённой смеси магнезии и оксида ртути получил амальгаму неизвестного металла, которому дал название «магнезиум», сохранившееся до сих пор во многих странах. В России с 1831 года принято название «магний». В 1829 г. французский химик А. Бюсси получил магний, восстанавливая его расплавленный хлорид металлическим калием. В 1830 г. М. Фарадей получил магний электролизом расплавленного хлорида магния.

Физические свойства

Магний — металл серебристо-белого цвета с гексагональной решёткой, обладает металлическим блеском; пространственная группа P 63/mmc, параметры решётки a = 0,32029 нм, c = 0,52000 нм, Z = 2. При обычных условиях поверхность магния покрыта прочной защитной плёнкой оксида магния MgO, которая разрушается при нагреве на воздухе до примерно 600 °C, после чего металл сгорает с ослепительно белым пламенем с образованием оксида и нитрида магния Mg3N2. Плотность магния при 20 °C — 1,737 г/см³, температура плавления металла tпл = 651 °C, температура кипения tкип = 1103 °C, теплопроводность при 20 °C — 156 Вт/(м·К).

Магний высокой чистоты пластичен, хорошо прессуется, прокатывается и поддаётся обработке резанием.

Для чего магний

Механические свойства магния зависят от его чистоты и состояния (литой, деформированный). Предел прочности при 20°С составляет 112,7—196 Н/м 2 , относительное удлинение 8—11,5%, твердость по Бринеллю 294—352 Н/м 2 .

Магний применяют главным образом в виде сплавов. Для улучшения механических и технологических свойств в магний добавляют алюминий и цинк; добавка марганца увеличивает его коррозионную стойкость. В последние годы появились новые сплавы, содержащие цирконий и торий. Эти сплавы обладают повышенной жаропрочностью. В космической и ракетной технике стали находить применение сверхлегкие сплавы с добавками лития.

Магниевые сплавы обладают хорошими литейными свойствами, поддаются обработке давлением, что позволяет получать листы, прутки, трубы, свариваются и легко обрабатываются резанием. Они хорошо поглощают вибрацию и обладают удельной прочностью более высокой, чем алюминиевые сплавы и углеродистые стали.

Эти свойства наряду с малой плотностью дают возможность широко применять магниевые сплавы при изготовлении различных деталей авиационных и автомобильных двигателей. Кроме того, сплавы устойчивы против воздействия масел и бензина, немагнитны и не дают искры при трении и ударе.

Современные самолеты насчитывают до 400 наименований деталей из магниевых сплавов массой иногда больше 1 т. В машиностроении и приборостроении успешно применяются магниевые сплавы для изготовления перфораторов, переносных лесозаготовительных пил и. другого механизированного инструмента; кино- и фотоаппаратов, малогабаритных переносных пишущих и счетных машин я других приборов.

Магний практически не образует сплавов с ураном, устойчив к воздействию СО2 до 500° С и обладает хорошей теплопровод ностью. Сочетание этих свойств позволило применять магниевые сплавы для капсюль ядерного горючего, оболочек тепловыделяющих элементов ядерных реакторов и резервуаров для ядерного горючего.

Стандартный электродный потенциал магния значительно отрицательнее железа, что позволяет его успешно применять для протекторной защиты паровых котлов, трубчатых холодильников и при строительстве морских судов. В последнее время получают признание гальванические элементы с магниевыми анодами, характеризующиеся большой емкостью, постоянством напряжения и выгодным соотношением силы тока и массы элемента.

Главным потребителем магния является сама металлургия (в США почти 30%). Благодаря высокому сродству к галогенам и кислороду магний широко применяют для восстановления дорогостоящих металлов из соединений. В значительных количествах восстанавливают магнием титан, цирконий и торий из их хлоридов; бериллий, скандий и уран — из их фторидов, бор из его окиси.

Магний применяют как легирующую добавку ко многим алюминиевым сплавам (авиаль, магналий, дуралюмин и т. д.). Его широко используют для модифицирования чугуна, так как он способствует образованию шаровидного графита и резко повышает прочностные характеристики чугуна.

Известно применение жидкого магния в качестве растворителя для извлечения плутония из урана.

Способность магния давать яркий свет и высокую температуру при горении использовалась в военной технике (производство осветительных ракет, трассирующих и зажигательных снарядов и авиабомб). Этим объясняется резкое увеличение производства магния в годы войны.

Статья на тему Свойства магния

Производство магниевых сплавов

Выплавку литейных магниевых сплавов производят:

  • в тигельных печах, работающих на жидком топливе, на газообразном топливе, на электричестве;
  • в электрических индукционных печах;
  • в отражательных печах.

Выплавку деформируемых магниевых сплавов производят:

  • в отражательных печах (3-12 т);
  • в индукционных печах (более 12 т).

Во время выплавки магниевого сплава его поверхность усиленно защищают слоем флюса, чтобы не было контакта с кислородом. Применяются флюсы, изготовленные на основе солей фтора и хлора, а также щелочных металлов. В формовочные смеси также вводят специальные присадки чтобы избежать горения сплава.

Дальнейшую обработку литейных сплавов производят способами:

  • литьё в песчаные формы – изготовление отливок методом заливки металла в специально подготовленные литейные модели, где будущие пустоты изделия заполняются песком;
  • литьё в кокиль – изготовление отливок в разборных формах, пригодных к многократному употреблению;
  • литьё под давлением – изготовление отливок путём впрыскивания металла в форму под давлением.

Дальнейшую обработку деформируемых сплавов производят способами:

  • прессования – обработки сплава давлением путём выдавливания его из закрытой полости;
  • ковки – обработки сплава давлением посредством приложения к нему высокой ударной нагрузки;
  • штамповки – обработка сплава давлением посредством направленной пластической деформации;
  • горячей прокатки – обработка сплав давлением путём пропускания его между давящими валками при высоких температурах;
  • холодной прокатки – обработка сплав давлением путём пропускания его между давящими валками при низких температурах.

Способы обработки готовых изделий для улучшения их механических показателей:

  • закалка (гомогенизация);
  • закалка со искусственным старением;
  • отжиг на снятие механических напряжений (рекристаллизация);
  • отжиг на выравнивание структуры металла и на снижение зернистости (диффузный).

Применение

Применение магниевых сплавов в промышленности и технике связано с высокими техническими характеристиками в качестве замены стальных и алюминиевых деталей с учетом требуемых механических свойств.

Наиболее широкое использование магниевые сплавы получили в авиации, в основном, благодаря легкости (на 20-30% легче алюминия) и высокой прочности. Магний используется для изготовления деталей шасси – стоек, дисков колес, а также различных конструктивных элементов конструкции. Корпуса приборов и механизмов также выполнены из данного материала.

Детали из сплавов магния

Легкий магниевый сплав в конструкции летательных аппаратов позволяет увеличить вес полезной нагрузки, не снижая прочностных характеристик. Такие особенности магниевого сплава обуславливают его широкое распространение в ракетной и космической технике.

Немалая доля конструкционных материалов из сплавов магния используется в автомобильной промышленности. В основном это детали двигателя (картер, поддон), трансмиссии и иные конструктивные элементы. Подсчитано, что при общем весе магниевых сплавов 100 кг, замена деталей на стальные, увеличит массу конструкции на 450 кг.

Из магния изготавливают диски колес. И, хотя они имеют значительно более высокую стоимость, чем традиционные, выигрыш от уменьшения неподрессоренной массе ходовой части автомобиля заметно улучшает динамический характеристики, облегчает работу подвески, делая вождение автомобиля комфортнее и безопаснее.

Физико-химические свойства

физическое

  • Внешний вид: белые кристаллы.
  • Молярная масса: 26,3209 г / моль
  • Плотность: 1,45 г / см3
  • Температура плавления: 285 ° C разлагается
  • Растворимость: в воде разлагается.

Это химическое соединение имеет молекулярную массу 26,321 г / моль, плотность 1,45 г / см3 и температуру плавления 327 ° С..

химическая

  • Прекурсор для изготовления других химических веществ.
  • Хранение водорода, как возможный источник энергии.
  • Восстановитель в органическом синтезе.

Важно указать, что это соединение нельзя довести до жидкого состояния, и когда его переносят или его температура плавления или вводят в воду, оно разлагается. Этот гидрид нерастворим в эфире

Это очень реактивное и легковоспламеняющееся вещество, а также пирофорное, то есть оно может самовозгораться в воздухе. Эти три условия представляют риски для безопасности, которые будут упомянуты в последнем разделе этой статьи. 

Свойства магния (таблица): температура, плотность, давление и пр.:

100 Общие сведения  
101 Название Магний
102 Прежнее название
103 Латинское название Magnesium
104 Английское название Magnesium
105 Символ Mg
106 Атомный номер (номер в таблице) 12
107 Тип Металл
108 Группа Цветной, щёлочноземельный металл
109 Открыт Джозеф Блэк, Шотландия, 1755 г., Хемфри Дэви, Великобритания, 1808 г., Антуан Александр Брутус Бюсси, Франция, 1829 г.
110 Год открытия 1755 г.
111 Внешний вид и пр. Лёгкий, ковкий, серебристо-белый металл
112 Происхождение Природный материал
113 Модификации
114 Аллотропные модификации
115 Температура и иные условия перехода аллотропных модификаций друг в друга
116 Конденсат Бозе-Эйнштейна
117 Двумерные материалы
118 Содержание в атмосфере и воздухе (по массе) 0 %
119 Содержание в земной коре (по массе) 2,9 %
120 Содержание в морях и океанах (по массе) 0,13 %
121 Содержание во Вселенной и космосе (по массе) 0,06 %
122 Содержание в Солнце (по массе) 0,07 %
123 Содержание в метеоритах (по массе) 12 %
124 Содержание в организме человека (по массе) 0,027 %
200 Свойства атома  
201 Атомная масса (молярная масса)* 24,304-24,307 а. е. м. (г/моль)
202 Электронная конфигурация 1s2 2s2 2p6 3s2
203 Электронная оболочка

K2 L8 M2 N0 O0 P0 Q0 R0

204 Радиус атома (вычисленный) 145 пм
205 Эмпирический радиус атома* 150 пм
206 Ковалентный радиус* 141 пм
207 Радиус иона (кристаллический) Mg2+

71 (4) пм,

86 (6) пм,

103 (8) пм

(в скобках указано координационное число – характеристика, которая определяет число ближайших частиц (ионов или атомов) в молекуле или кристалле)

208 Радиус Ван-дер-Ваальса 173 пм
209 Электроны, Протоны, Нейтроны 12 электронов, 12 протонов, 12 нейтронов
210 Семейство (блок) элемент s-семейства
211 Период в периодической таблице 3
212 Группа в периодической таблице 2-ая группа (по старой классификации – главная подгруппа 2-ой группы)
213 Эмиссионный спектр излучения
300 Химические свойства  
301 Степени окисления 0; +1; +2
302 Валентность II
303 Электроотрицательность 1,31 (шкала Полинга)
304 Энергия ионизации (первый электрон) 737,75 кДж/моль (7,646236(4) эВ)
305 Электродный потенциал Mg2+ + 2e– → Mg, Eo = -2,363 В
306 Энергия сродства атома к электрону 50 кДж/моль
400 Физические свойства
401 Плотность 1,738 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело),

1,584 г/см3 (при температуре плавления 650 °C и иных стандартных условиях, состояние вещества – жидкость),

1,57 г/см3 (при 651 °C и иных стандартных условиях, состояние вещества –жидкость)

402 Температура плавления 650 °C (923 K, 1202 °F)
403 Температура кипения 1090 °C (1363 K, 1994 °F)
404 Температура сублимации
405 Температура разложения
406 Температура самовоспламенения смеси газа с воздухом
407 Удельная теплота плавления (энтальпия плавления ΔHпл)* 8,48 кДж/моль
408 Удельная теплота испарения (энтальпия кипения ΔHкип)* 128 кДж/моль
409 Удельная теплоемкость при постоянном давлении 0,983 Дж/г·K (при 25 °C),
1,6 Дж/г·K (при 100 °C),
1,31 Дж/г·K (при 650 °C)
410 Молярная теплоёмкость* 24,869 Дж/(K·моль)
411 Молярный объём 14,0 см³/моль
412 Теплопроводность 156 Вт/(м·К) (при стандартных условиях),

156 Вт/(м·К) (при 300 K)

500 Кристаллическая решётка
511 Кристаллическая решётка #1
512 Структура решётки

Гексагональная плотноупакованная

513 Параметры решётки a = 3,2029 Å, c = 5,2000 Å
514 Отношение c/a 1,624
515 Температура Дебая 318 К
516 Название пространственной группы симметрии P63/mmc
517 Номер пространственной группы симметрии 194
900 Дополнительные сведения
901 Номер CAS 7439-95-4

Примечание:

201* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.

205* Эмпирический радиус атома магния согласно составляет 160 пм.

206* Ковалентный радиус магния согласно и составляет 141±7 пм и 136 пм соответственно.

407* Удельная теплота плавления (энтальпия плавления ΔHпл) магния согласно составляет 9,20 кДж/моль.

408* Удельная теплота испарения (энтальпия кипения ΔHкип) магния согласно составляет 131,8 кДж/моль.

410* Молярная теплоемкость магния согласно составляет 24,90 Дж/(K·моль).

Особенности Mg, как элемента периодической системы

Химические свойства магния во многом лежат где-то между бериллием и кальцием. Прежде всего, это проявляется во взаимодействии с водой. Первый не реагирует с ней вообще, второй же в ней растворяется. Mg слабо взаимодействует с нагретой водой. Но при взаимодействии с водяным паром (от 400 градусов по Цельсию) происходит реакция Mg+ H2O = MgO + H2, в которой металл растворяется при активном выделении водорода.

Видео – химические свойства магния:

Несколько иная реакция происходит с водяным паром: Mg+ 2H2O = Mg(OH)2 +H2. Причем свободный водород в итоге поглощается магнием MgH3. В результате, если плавление металла происходило во влажной среде, по мере его застывания водород практически полностью исчезает.

Свойства магния: взаимодействовать с водой при высоких температурах становится и гореть при присутствии в атмосфере углекислого газа, – затрудняют тушение пожаров с участием Mg. Их нельзя тушить водой. По инструкции используют порошковые огнетушители и песок. Также можно применять оксиды Si, с которыми магний вступает в реакцию, но количество выделяемой теплоты значительно ниже.

На фото: горение магния

Также необходимо отметить, что несмотря на фактическую нерастворимость Mg(OH)2 в воде, раствор фенолфталеина в его присутствии окрашивается в розовый цвет.

Магний в таблице Менделеева

Магний металл устойчив к едким щелочам, соде, керосину, бензину, минеральным маслам. Способность этого элемента отнимать кислород и хлор, используют для восстановления чистых веществ. Например, брома или титана.

Для синтезов разных классов органических соединений используется свойство магния взаимодействовать с галогенами. Обычно это Cl, Br, I, с фтором Mg образует защитную пленку, из-за чего их соединение редко используется для синтеза реактивов Гриньяра. Последние наиболее часто формируются на основе формулы RMgHal, где R – это органический радикал, а Hal – один из перечисленных галогенов.

Магниевые «нобели»: хлорофилл

Следующий наш рассказ о нобелевских премиях, связанных с магнием, будет посвящен Рихарду Вильштеттеру, ученику Адольфа фон Байера, изучавшего красители.

Рихард Вильштеттер

В год, когда его патрон удостоился Нобелевской премии по химии (1905), он перешел на полную профессорскую ставку в Цюрих, в знаменитый ETH, и начал работать на производстве красителя хлорофилла — вещества, которое делает листья зелеными и который обеспечивает превращение углекислого раза растениями в углеводы (процесс фотосинтеза).

Именно на поприще изучения хлорофилла (до Вильштеттера вообще никто не знал даже брутто-формулы этого важнейшего вещества) он добился наибольших успехов. Сначала он выявил эмпирическую формулу хлорофилла — относительное содержание в нем атомов углерода, азота, водорода, кислорода и магния.

Вильштеттеру удалось опровергнуть утверждение о том, что у каждого растения — свой хлорофилл. Химик вместе со своим учеником Артуром Штоллем показал, что во всем растительном царстве существуют всего две очень близкие формы хлорофилла: a и b (правда, потом нашлись и c1, и c2, и некоторые другие).

Хлорофилл C1 и C2

Постепенно Вильштеттер начал расшифровывать структуру пигмента и обнаружил в нем тетрапиррольное кольцо (порфирин) с центральным атомом магния. Нужно отметить, что сырьем «хлорофилловой фабрики» Вильштеттера стала крапива, ведь в ней содержится очень много хлорофилла.

«Цель моей работы состояла в том, чтобы установить структурные характеристики наиболее широко распространенных пигментов растений, в частности хлорофилла, и найти определенные критерии, касающиеся их химической функции», — так описал свой труд Рихард Вильштеттер в нобелевской лекции.Это была первая премия «за хлорофилл». Но далеко не последняя.

В 1930 году Нобелевскую премию по химии с формулировкой «За исследования по конструированию гемина и хлорофилла, особенно за синтез гемина» получил немец Ханс Фишер, который сделал первые шаги по синтезу хлорофилла.

На представлении лауреата Ханс Седербаум из Шведской королевской академии сказал: «Работы Фишера стали научным достижением, которое вряд ли могло бы быть получено предыдущими поколениями. Исследования Фишера показали, что природа, несмотря на ее непомерное многообразие, довольно экономно использует стандартный строительный материал для конструирования таких сильно различающихся как по внешнему виду, так и по распространению двух веществ, ».

Ханс Фишер

Дальше – больше. Как вы думаете, кто сделал первый в истории направленный синтез хлорофилла? Можно даже не гадать, «второй по крутизне химик после природы» (цитируя представителя Нобелевского комитета) – Роберт Бернс Вудворд,который опубликовал очередной рутинный великий синтез в 1960 году. Так что и этот синтез стал кирпичиком в нобелевской премии великого Вудворда, получившего премию «потому, что он молодец».

Американский биохимик Мелвин Кальвин при помощи радиоактивного углерода сумел показать, как именно работает хлорофилл в растениях. Как итог – Нобелевская премия по химии 1961 году «За исследование усвоения двуокиси углерода растениями». И, наконец, отчасти с хлорофиллом связана Нобелевская премия по химии 1988 года, которую получили немцы Иоганн Дайзенхофер, Хармут Михель и Роберт Хубер, которые установили трёхмерную структуру фотосинтетического реакционного центра.

Но, конечно, магний важен для человека не только Нобелевскими премиями. Магний – одиннадцатый по распространенности в нашем организме элемент, при этом он входит в состав или участвует в работе почти 300 ферментов (это из известных!), так что этот элемент нам просто необходим.

А в завершение нашего длинного рассказа мы покажем вам видео из знаменитой серии популярных видеороликов о химических элементах серии «Периодическое видео химических элементов», которую ведет замечательный профессор Ноттингемского университета Мартин Полякофф

Текст: Алексей Паевский

риски

Реакция с водой

Как уже упоминалось, гидрид магния является веществом, которое очень легко и бурно реагирует с водой, демонстрируя способность взрываться при более высоких концентрациях..

Это происходит потому, что его экзотермическая реакция генерирует достаточно тепла, чтобы зажечь газообразный водород, выделяющийся в реакции разложения, что приводит к довольно опасной цепной реакции..

Это пирофор

Гидрид магния также пирофорен, что означает, что он может самопроизвольно воспламеняться в присутствии влажного воздуха и образует оксид магния и воду.

Его вдыхание не рекомендуется в твердом состоянии или в контакте с его парами: вещество в своем естественном состоянии и продукты его разложения могут вызвать серьезные травмы или даже смерть.

Он может генерировать коррозийные растворы при контакте с водой и ее загрязнении. Контакт с кожей и глазами не рекомендуется, а также вызывает раздражение слизистых оболочек.

Не было продемонстрировано, что гидрид магния может вызывать хронические последствия для здоровья, такие как рак, репродуктивные дефекты или другие физические или психические последствия, но рекомендуется использовать защитное оборудование при обращении с ним (особенно респираторы или маски, для его мелкий пыль характер).

При работе с этим веществом влажность воздуха должна поддерживаться на низком уровне, гасить все источники возгорания и транспортировать его в бочках или других контейнерных контейнерах..

Всегда следует избегать работы с большими концентрациями этого вещества, когда его можно избежать, так как вероятность взрыва значительно уменьшается.

В случае разлива гидрида магния рабочая зона должна быть изолирована, а пыль собирается пылесосом. Вы никогда не должны использовать сухой метод подметания; увеличивает шансы реакции с гидридом. 

Применение добавок

Магний в чистом виде легко поддается механической обработке, но крайне неустойчив к коррозии. Именно по этой причине почти не практикуется использование магния в чистом виде. В состав сплавов чаще всего включают:

  • алюминий;
  • цинк;
  • цирконий.

Пластичность магния возрастает при добавлении 3% алюминия или цинка. При увеличении пропорции добавок сплав приобретает повышенную прочность, не теряя при этом способность к механической обработке.

Добавка кремния заметно улучшает пригодность сплава к изготовлению отливок. Железо и никель снижают устойчивость материала к коррозии. Разнообразные магниевые сплавы делят на:

  • литейные (МЛ);
  • деформируемые (МА).

В современном промышленном производстве литейные более востребованы. Кроме того, для изготовления некоторых деталей применяют сплав магния с цинком, никелем, медью и железом, поскольку этот материал особенно устойчив к вибрационным нагрузкам.

Каков он, «вспыльчивый металл»

Наш герой — элемент второй группы периодической системы Менделеева. Латинское название Magnesium, атомный номер 12.

Магний теперь относится к щелочноземельным металлам. Однако раньше он таким не считался — его гидроксид не является щелочью, хотя раствор в присутствии фенолфталеина (индикатор) окрашивается в слабо-розовый цвет. Полноценные щелочи с фенолфталеином окрашиваются в густой малиновый цвет.

У чистого магния плотноупакованная гексагональная кристаллическая структура.

Строение атома указывает на принадлежность к металлам. Электронная формула элемента — 1s 2 2s 2 2p 6 3s 2. То есть, на внешнем энергетическом уровне у магния болтается пара электронов, в любой момент готовая «свалить налево» — вступить в реакцию с другим элементом. Кое-кто еще помнит, что свойство металлов на внешнем уровне иметь от 1 до 3 электронов.

Взаимодействие с различными кислотами

Для краткости, проще рассмотреть несколько экспериментов. Для них берутся такие виды кислот:

  1. Соляная.
  2. Азотная.
  3. Серная (разбавленная и нет).

В первом случае наблюдается практически мгновенное растворение, сопровождающееся пузырьками белых газов и резким запахом хлора. Емкость, в которой происходила реакция нагревается.

В азотной кислоте кусочек магния не тонет. Бурый газ скапливается над поверхностью жидкости, выделяется тепло. Иногда говорят, что кислота «кипела», окружая кусочки магния.

Третий случай необходимо рассматривать, как два частных. В неразбавленной серной кислоте реакция идет медленно. Если же использовать раствор с небольшим количеством воды, магний также, как с азотной кислотой плавает на поверхности. При этом происходит едва заметная реакция с выделением белых пузырьков газа.

Физико-химические характеристики

У металла интересные химические свойства:

  • Равнодушен к щелочам, но при взаимодействии с кислотами растворяется. Процесс сопровождает «фонтан» из водорода.
  • Нагреваемый на воздухе металл сгорает, выделяя жар плюс яркое свечение.
  • Магниевый порошок, смешанный с активными окислителями (той же марганцовкой), порождает взрыв.

В стандартных условиях (на воздухе) металл окисляется, из-за чего поверхность покрывается защитной пленкой. Разрушить ее способен нагрев на воздухе до 600°C. «Оголенный» металл превращается в ослепительно-белую вспышку пламени, образуя оксид и нитрид.

Свойства атома
Название, символ, номер Магний / Magnesium (Mg), 12
Атомная масса
(молярная масса)
 а. е. м. (г/моль)
Электронная конфигурация 3s2
Радиус атома 160 пм
Химические свойства
Ковалентный радиус 136 пм
Радиус иона 66 (+2e) пм
Электроотрицательность 1,31 (шкала Полинга)
Электродный потенциал −2,37 В
Степени окисления 0; +2
Энергия ионизации
(первый электрон)
 737,3 (7,64) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 1,738 г/см³
Температура плавления 650 °C (923 K)
Температура кипения 1090 °C (1363 K)
Уд. теплота плавления 9,20 кДж/моль
Уд. теплота испарения 131,8 кДж/моль
Молярная теплоёмкость 24,90 Дж/(K·моль)
Молярный объём 14,0 см³/моль
Кристаллическая решётка простого вещества
Структура решётки гексагональная
Параметры решётки a=0,32029 нм, c=0,52000 нм
Отношение c/a 1,624
Температура Дебая 318 K
Другие характеристики
Теплопроводность (300 K) 156 Вт/(м·К)
Номер CAS 7439-95-4

Утилитарные свойства металла определяются, среди прочего, степенью чистоты.

Особо чистые образцы пластичны, ковки, легко обрабатываются (прессовка, прокат, резание).