Свойства сплавов никеля

Получение металла

Никелевая руда

Синтез частиц никеля проводят химическим способом из малорастворимого карбоната с использованием восстановителей. Основные способы получения никеля: плавка, пиро- и гидрометаллургические методы. Как добывают никель в современном мире? Получение никеля делится на несколько этапов:

  • Руду подвергают дроблению, сушке. Удаляется лишняя влага.
  • Образуются флюс и гипс.
  • Затем к продуктам добавляют кокс и переплавляют.
  • В результате получается шлак и штейн.
  • Штейн продувают в конвертере.
  • Выходит белый никелевый штейн.
  • Из шлака извлекают угарный газ.
  • Никелевый штейн дробят, обжигают.
  • Закись восстанавливают древесным углём. Пыль возвращают на обжиг (см. Страны лидеры по добыче угля).
  • Проводят рафинирование.

Классификация сплавов

Классификация никелевых сплавов основывается на составе и свойствах.

Кислотостойкие

Сплавы с присадкой-легированием другими металлами:

  • Хром, вольфрам придают сплаву стойкости в агрессивных окислительных средах.
  • Соединения с медью или молибденом используются в агрессивных неокислительных средах.

Стойкость к коррозии обеспечивают кремний, алюминий.

Жаропрочные

Сплавы типа «никель + хром + присадка других легирующих элементов». Такими элементами выступают алюминий, вольфрам, титан, молибден, стронций, другие.

Такие сплавы металлов востребованы для изготовления узлов силовых установок, подверженных максимальным нагрузкам.

История

Никель был официально открыт в 1751 году химиком Акселем Кронстедтом, который нашел его в кобальтовой земле. Однако еще раньше его раскапывали в горах Саксонии. Горняки использовали руду, содержащую никель, для изготовления стекла. По внешним признакам саксонцы сначала принимали эту руду за серебряную и пытались переплавить ее в драгоценный металл, но этого не получалось. Кроме того, при плавлении из руды выделялся ядовитый газ, который наносил вред горнякам. Неудачу потерпели и попытки добыть из этой руды медь.

В итоге в конце XVII в. саксонцы назвали руду «купферникель», что в переводе означает «медный дьявол». Это связано с тем, что горняки считали выделение ядовитого газа происками злых духов, обитавших в горах. Именно купферникель исследовал Аксель Кронстедт в 1751 году. Он получил из него окисел зеленого цвета и восстановил его до металла, который до этого не был известен науке. Химик назвал этот металл никелем.

В 1775 году Торберн Улаф Бергман получил никель в более чистом виде и подробнее описал его свойства. Он выяснил, что по своему составу этот металл больше похож на железо, чем на медь. В конце XVIII – начале XIX вв. многие химики, начиная с Жозефа Луи Пруста, детально изучали никель. В 1804 году немецкий химик Иеремия Вениамин Рихтер получил наконец чистый металл, и никель окончательно утвердился как химический элемент.

Химические свойства

Никель химически малоактивен. Он образует поверхностную оксидную пленку, из-за чего устойчив в атмосфере, щелочи, многих кислотах и воде. Металл не подвергается коррозии. Образует два оксида (NiO и Ni2O3) и два гидроксида (Ni(OH)2 и Ni(OH)3).

Хлорид, нитрат, сульфат и нитрат никеля — четыре растворимые соли. Они имеют желтый или желто-коричневый оттенок и окрашивают растворы в зеленый цвет. Фосфат, оксалат и сульфиды никеля (черный, зеленый и бронзовый) — нерастворимые соли.

Металл поглощает газы (углерод, водород и многие другие), которые ухудшают его механические свойства. С кислородом взаимодействует при температуре выше 500 ⁰С.

В мелкодисперсном состоянии никель самовоспламеняется на воздухе. При нагревании соединяется с галогенами. Образует сульфид при горении в сере, а при нагревании оксида NiO с серой получается моносульфид. Металл также вступает в реакцию с азотной кислотой: образуются нитрат никеля и оксид азота.

По химическим свойствам больше всего похож на железо и кобальт, в меньшей степени — на благородные металлы и медь. Он горит только в виде порошка, проявляет переменную валентность в соединениях (чаще всего двухвалентен). Образует комплексные и координационные соединения.

Известные производители

Из числа стран производителей больше всего никеля производят в Китае, Канаде, России, Японии и Австралии.

  1. Самым крупным предприятием по переработке никеля считается зарубежная компания Инко. Ее никелеплавительный завод Коп-пер-Клифф способен переработать около 291 тысяч тонн сырья в год.
  2. Второе почетное место производителя никеля занимает завод ГМК «Норильский Никель» (266 тысяч тонн сырья).
  3. На третьем месте стоит иностранное предприятие: Jinchuan Group Co. Ltd (150 тысяч тонн сырья). Это китайское предприятие. Основной офис находится в Цзиньчан (Ганьсу). Производит компания не только никель, но и селен, серебро, медь, золото, кобальт, палладий и платину. Производительность Jinchuan Group Co. Ltd составляет 90% от всей переработки никеля в Китае. Эта компания является самой крупной в Азии.
  4. На четвертом месте — Glencore International AG (96 тысяч тонн).
  5. Пятое место занимает предприятие BHP Billiton (78,5 тысяч тонн). Это крупнейшее предприятие основано в 2001 году. Основной офис BHP Billiton находится в Мельбурне (Австралия), а в Лондоне у них дополнительная штаб квартира. С юридической точки зрения описываемое предприятие состоит из двух компаний, у каждой из которой отдельный собственнике. На рынке акций они существуют независимо друг от друга.

В России существуют еще несколько предприятий по переработке никеля. Это ОАО «Комбинат Южуралникель» и ОАО «Уфалейникель».

  • ОАО «ГМК «Норильский никель»» имеет несколько филиалов. Это Западный филиал, Кольская ГМК и ОАО «ГМК «Печенганикуль». Норильский никель перерабатывает преимущественно сульфидные руды, в состав которых входит дополнительно платиноиды, медь, кобальт и некоторые драгоценные металлы. Кольская ГМК перерабатывает медно-никелевый штейн, который им доставляют из вне. Этот филиал не имеет собственных ресурсов.
  • Южуралникель находится в Оренбургской области. Компания добывает руду на следующих месторождениях: Буруктальское и Сахаринское. Перерабатывают руду на Орской фабрике. Южуралникель используют устаревшую технологию производства (они применяют кокс). Поэтому рентабельность компании сильно зависит от цен на уголь.

О том, как производится никель на заводе в Норильске, показан в данном видео:

https://youtube.com/watch?v=ix_v4TYqW9M

Никель металлический

У нас в наличии всегда никелевые порошки, слитки и т.д. различных марок, с различным содержанием основного вещества и размера частиц. По стандартам используется следующая классификация никелевых порошков:

ПНЭ (электролитический порошок никеля) и ПНК (карбонильный порошок никеля), где буквы «Э» и «К» характеризуют способ изготовления порошка. Порошки никеля, полученные разными методами, отличаются уровнем чистоты, порошок полученный посредством электролиза содержит не менее 99,5% Ni+Со, в то время, как карбонильный порошок не менее 99,9% Ni. Каждая марка имеет свои подгруппы, отличие которых заключается в химических примесях; размере частиц: ПНЭ в диапазоне от <75 мкм до 250 мкм, ПНК в диапазоне от <20 мкм до 100 мкм , насыпной плотности(от 0,45г/см3 до 5г/см3). Все стандарты определены ГОСТ 9722-97. Он же классифицирует их по маркам: ПНЭ-1, ПНЭ-2 ПНК-УТ1, ПНК-УТ2, ПНК-УТ3, ПНК-УТ4, ПНК-ОТ1, ПНК-ОТ2, ПНК-ОТ3, ПНК-ОТ4, ПНК-1Л5, ПНК-1Л6, ПНК-1Л7, ПНК-1Л8, ПНК-2К9, ПНК-2К10 Каждой цифре соответствует свое значение примесей, размер частиц, насыпная плотность. С этими данными можно познакомиться непосредственно в карточке товара на нашем на сайте. Кроме этого рынок предлагает еще несколько вариантов никелевого порошка, например: никелевая пудра, ультрадисперсный порошок. Сплавы никеля. Существует порядка нескольких тысяч разновидностей сплавов с участием никеля, ниже некоторые из них : Ални-сплавы , представляю собой комбинацию из следующих компонентов: никель+ железо+алюминий, содержание никеля (20-35%) Инвар, никель+железо, содержание никеля (34,5%) Инконель , хром+никель+железо, содержание никеля(76%) Константан и Копель, медь+никель, очень схожие между собой сплавы, содержание никеля(39-43%) Мельхиор, медь+никель, содержание никеля варьируется от 5% до 30% Нейзильбер, медь+никель+цинк, содержание никеля(5-35%) Нимоник, Нитинол, Нихром, Пермаллой,Хромель, Платинит, Элинвар, Хастелой, Копель и т.д. Благодаря тому, что сплавы никеля имеют широкий диапазон свойств, они захватили очень широкую область применения: магниты, реактивные двигатели, измерительные приборы, кораблестроение, химическая, текстильная, медицинская, нефтеперерабатывающая промышленность. Некоторые сплавы, благодаря своим свойствам, используются даже для изготовления таких эстетических предметов, как украшения, посуда

Физико-химические характеристики

Никель устойчив к окислению. Это свойство обеспечивает тонкая поверхностная пленка оксида NiO, появляющаяся при обычных температурах.

Свойства атома
Название, символ, номер Ни́кель / Niccolum (Ni), 28
Атомная масса
(молярная масса)
58,6934(4) а. е. м. (г/моль)
Электронная конфигурация 3d8 4s2
Радиус атома 124 пм
Химические свойства
Ковалентный радиус 115 пм
Радиус иона (+2e) 69 пм
Электроотрицательность 1,91 (шкала Полинга)
Электродный потенциал -0,25 В
Степени окисления 0, +2, +3
Энергия ионизации
(первый электрон)
 736,2 (7,63) кДж/моль (эВ)
Термодинамические свойства простого вещества
Плотность (при н. у.) 8,902 г/см³
Температура плавления 1726 K (1453 °C, 2647 °F)
Температура кипения 3005 K (2732 °C, 4949 °F)
Уд. теплота плавления 17,61 кДж/моль
Уд. теплота испарения 378,6 кДж/моль
Молярная теплоёмкость 26,1 Дж/(K·моль)
Молярный объём 6,6 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая гранецентрированая
Параметры решётки 3,524 Å
Температура Дебая 375 K
Прочие характеристики
Теплопроводность (300 K) 90,9 Вт/(м·К)
Номер CAS 7440-02-0

Центрированная по граням структура обуславливает стойкость к нагрузкам, а особенности строения электронных оболочек атомов – свойство намагничивания.

Физические свойства никеля:

400 Физические свойства
401 Плотность* 8,908 г/см3 (при 20 °C и иных стандартных условиях, состояние вещества – твердое тело),

7,81 г/см3 (при температуре плавления 1455 °C и иных стандартных условиях, состояние вещества – жидкость)

402 Температура плавления* 1455 °C (1728 K, 2651 °F)
403 Температура кипения* 2730 °C (3003 K, 4946 °F)
404 Температура сублимации
405 Температура разложения
406 Температура самовоспламенения смеси газа с воздухом
407 Удельная теплота плавления (энтальпия плавления ΔHпл)* 17,48 кДж/моль
408 Удельная теплота испарения (энтальпия кипения ΔHкип)* 379  кДж/моль
409 Удельная теплоемкость при постоянном давлении 0,439 Дж/г·K (при 20°C)
410 Молярная теплоёмкость* 26,07 Дж/(K·моль)
411 Молярный объём 6,6 см³/моль
412 Теплопроводность 90,9 Вт/(м·К) (при стандартных условиях),

90,9 Вт/(м·К) (при 300 K)

413 Коэффициент теплового расширения 13,4 мкм/(М·К) (при 25 °С)
414 Коэффициент температуропроводности
415 Критическая температура
416 Критическое давление
417 Критическая плотность
418 Тройная точка
419 Давление паров (мм.рт.ст.)
420 Давление паров (Па)
421

Стандартная энтальпия образования ΔH

422 Стандартная энергия Гиббса образования ΔG
423 Стандартная энтропия вещества S
424 Стандартная мольная теплоемкость Cp
425 Энтальпия диссоциации ΔHдисс 
426 Диэлектрическая проницаемость
427 Магнитный тип
428 Точка Кюри*
429 Объемная магнитная восприимчивость
430 Удельная магнитная восприимчивость
431 Молярная магнитная восприимчивость
432 Электрический тип
433 Электропроводность в твердой фазе
434 Удельное электрическое сопротивление
435 Сверхпроводимость при температуре
436 Критическое магнитное поле разрушения сверхпроводимости
437 Запрещенная зона
438 Концентрация носителей заряда
439 Твёрдость по Моосу
440 Твёрдость по Бринеллю
441 Твёрдость по Виккерсу
442 Скорость звука
443 Поверхностное натяжение
444 Динамическая вязкость газов и жидкостей
445 Взрывоопасные концентрации смеси газа с воздухом, % объёмных
446 Взрывоопасные концентрации смеси газа с кислородом, % объёмных
446 Предел прочности на растяжение
447 Предел текучести
448 Предел удлинения
449 Модуль Юнга
450 Модуль сдвига
451 Объемный модуль упругости
452 Коэффициент Пуассона
453 Коэффициент преломления

Обработка

При использовании никеля выбирают способ нанесения защитного слоя. Для этого существует химическая и электролитическая технология.

Электролитическая

Покрытие наносится в ванне с заготовкой, электродом и электролитом. Ток подается из трансформатора или лабораторного источника. Покрытие получается однородным, наличие дефектов сводится к минимуму, поры отсутствуют. Нанесение выполняется следующим образом:

  1. Возьмите емкость, в которую без труда поместится деталь.
  2. Положите электрод и закрепите заготовку на кронштейне так, чтобы они не дотрагивались до стенок.
  3. Добавьте электролит.
  4. Найдите источник питания с мощностью до 6В и силой тока 1,2 А.
  5. Прикрепите к детали отрицательный заряд, а к аноду положительный.
  6. Включите источник питания. Помните, что в зависимости от времени подачи тока формируется разная толщина покрытия.
  7. Выключите ток, как только желаемый эффект получен.
  8. Отшлифуйте изделие, если в этом есть необходимость.

Химическая

Благодаря этому методу никелевый слой получается более прочным. Его проще реализовать дома, поскольку опыт или специальные навыки не требуются. У химической обработки есть свои недостатки: она не используется для деталей сложной формы или с шершавой поверхностью, а также неравномерно распределяется в труднодоступных местах.

Процесс нанесение слоя:

Смешайте реактивы с водой в глубокой емкости

Важно, чтобы она не повредилась от используемых компонентов.
Нагрейте раствор, а после закипания добавьте NaPO2H2.
Возьмите металлическую емкость, покрытую эмалью, сделайте диэлектрический держатель. Конструкцию формируют так, чтобы деталь не касалась стенок.
Добавьте электролит, а затем опустите на держателе деталь.
Доведите смесь до закипания, а затем оставьте на 2–3 часа в растворе

Время регулируется в зависимости от желаемого эффекта.
Вытащите деталь и промойте гашеной известью.

Помимо описанных способов существует черное никелирование. Его используют в декоративных или технических целях. Высокими защитными свойствами оно не обладает, но придает глубокий черный цвет из-за большого количества цинка.

Историческая хроника

Первые упоминания о никеле встречаются в исторических хрониках 1751 года. Обработчик металлов А. Ф. Кронштедт из Швеции обнаружил его наличие в некоторых химических веществах. Его исследования строились на анализе соединений с мышьяком. После открытия, его отнесли к веществам, которые лишь частично имеют свойства характерные для металлов. Долгое время шли дискуссии по поводу этого определения. В 1775 г. Соотечественник Кронштедта Т. Брегман окончательно доказал его принадлежность к простым веществам. Конец спорам положил химик из Германии И. Рихтер, которому в 1804 г. удалось выделить металл путем обработки его купороса.

Физико-химические характеристики

Магнитные особенности элемента сохраняются при весьма низких температурах, достигающих -340 °C. Кроме того, спецификой его является отсутствие предрасположенности к коррозии.

Можно выделить следующие физические характеристики металла:

  • атомный номер — 28;
  • молярная масса — 58,69 а. е. м.;
  • удельная теплоемкость — 0,443 Дж/(K· моль);
  • температура плавления — 1453 °C;
  • температура кипения — от 2730 до 2915 °C.

Особенность никеля — отсутствие негативных реакций при воздействии воздуха или воды. Это обусловлено тем, что на поверхности образуется оксид никеля NiO — защитная пленка, защищающая металл от последующего окисления.

При высоких температурах элемент способен реагировать с кислородом и всеми галогенами. Кроме того, реакция наблюдается при его взаимодействии с аммиаком и азотной кислотой.

Добывают везде

Элемент Ni не встречается в чистом виде, только в оксидах, сульфидах и силикатах. Добыча никеля ведется на всех континентах, а плавильни расположены в 25 странах. Большие объемы вторичного, первичного металла поступают на мировой рынок никеля. Запасают никель на известных месторождениях. Где же добывают  никель? Основные районы добычи никеля:

  • Канада,
  • Россия,
  • Австралия,
  • Куба,
  • Албания,
  • Греция,
  • Украина.

Месторождения никеля на морском дне превышают содержание металла на суше. База запасов никеля сможет содержать Землю больше ста лет. Так что потребление никеля может быть высоким.

Уникальные месторождения оказывают влияние на развитие горной промышленности. Добыча никеля в мире ведется в 410 месторождениях. Уникальные месторождения в России находятся в Норильске-1, Талнахском и Октябрьском. В мире имеются 2 месторождения в Канаде, 3 в Австралии, 1 в Китае, в Греции, в Новой Каледонии, 2 в Индонезии.

Где же добывают никель в России? В настоящее время страна обладает богатыми запасами ресурса, занимая первое место в мире по его производству. Добыча никеля в России происходит в Таймырском округе (69%), Мурманской области (17%), Урале (11%).

Производство никеля в России ведётся:

  • ОАО ГМК «Норильский никель»(95%);
  • ОАО «Южурал-никель»;
  • ОАО «Уфалейский никелевый комбинат»;
  • ЗАО ПО «Режникель».

Производство никеля в мире:

  • «Vale Inco Ltd» в Канаде;
  • «Western Mining Corp.» в Австралии;
  • «Jinchuan Group Co. Ltd» в Китае;
  • « Goro Vale» в Новой Каледонии.

Нахождение в природе и производство

Больше всего никеля содержится в глубоких слоях. В земной коре — его 0,0058%, в ультраосновных породах — 0,2 %. Если верить гипотезе, что земное ядро состоит из никелистого железа, общее содержание никеля в земле составляет примерно 3%. Никель также обнаружен в некоторых метеоритах.

В земной коре этот металл соседствует с железом и магнием, с которыми он имеет сходную валентность. В минералах магния и железа никель содержится в виде изоморфной примеси. Также существует 53 известных науке минерала никеля. Большая часть из них была образована под воздействием давления и высоких температур, например, при застывании магмы. Сульфидные руды, содержащие данный металл, имеют в своем составе медь. Некоторые руды никеля включают железо, серу, мышьяк, кобальт, магний.

Больше всего этого металла добывается на территории России. Крупные никелевые рудники также находятся в Канаде, Австралии, Новой Каледонии, Индонезии и на Кубе.

Больше всего никеля (около 80%) получают из сульфидных медно-никелевых руд, значительно меньше — из силикатных (окисленных) руд.

Что такое “память заряда”

Схема устройства литий-ионного аккумулятора для шуруповерта.

Главное, на что нужно обращать внимание при покупке шуруповерта – на показатели напряжения и емкости его аккумулятора. У большинства таких инструментов емкость не превышает 2,7А/ч

Заряжаются такие инструменты от обычной бытовой сети с напряжением в 220В, для чего в комплект инструмента входит зарядное устройство. Диапазон напряжения в разных моделях находится в пределах от 6 до 22 В. Полностью разряженной батарее требуется время на зарядку в среднем 5-6 ч.

По своей мощности шуруповерты можно разделить на профессиональные, полупрофессиональные и бытовые. Самые мощные и долговечные – профессиональные, но они же и самые дорогие. А самые ходовые (они же самые дешевые) – бытовые, оснащенные преимущественно одной или двумя никель-кадмиевыми аккумуляторными батареями.

Главной проблемой этих батарей считается так называемый эффект памяти их заряда. Для полупрофессиональных инструментов, снабженных преимущественно никель-маталлгидридными аккумуляторами, эта проблема стоит не так остро, а для профессиональных инструментов с литиево-ионными батареями эта проблема практически не возникает.

“Эффект памяти” возникает тогда, когда не разряженная до конца емкость снова ставится не подзарядку, но снова заряжается не до конца. В этом случае аккумулятор просто перестает “понимать”, насколько полон его заряд. Если причина падения мощности батареи в этом, то устранить ее относительно просто. Сначала нужно разобрать аккумуляторный блок, обнаружить в нем недозаряженные элементы и “разогнать” их – зарядить большим, чем положено по инструкции, током, затем полностью разрядить и снова подзарядить, но не на полную мощность. Если электролит из батареи не испарился, то шансы на успешное восстановление аккумулятора шуруповерта в этом случае очень приличные.

Химические свойства

Что необходимо для определения качественного состава никеля? Здесь следует перечислить из каких атомов (а именно их количества) состоит наш металл. Молярная масса (ее еще называют атомной массой) равна 58,6934 (г/моль). С измерениями продвинулись дальше. Радиус атома нашего металла 124 пм. При измерении радиуса иона, результат показал (+2е) 69 пм, а число 115 пм – это ковалентный радиус. По шкале известного кристаллографа и великого химика Полинга, электроотрицательность равна 1,91, а потенциал электронный — 0,25 В.

Действия воздуха и воды на никель практически ничтожны. То же можно сказать и о щелочи. Почему этот металл так реагирует? На его поверхности создается NiO. Это покрытие в виде пленки, которая не дает окисляться. Если никель раскалить до очень высокой температуры, тогда он начинает проявлять реакцию с кислородом, а также воздействует с галогенами, причем со всеми.

Если никель попадет в азотную кислоту, то реакция не заставит себя ждать. Также он охотно активизируется в растворах с содержанием аммиака.

Но не вся кислота действует на никель. Такие кислоты, как соляная и серная, растворяют его очень медленно, но верно. А попытки проделать то же самое с никелем в фосфорной кислоте вообще не увенчались успехом.

Никелевый дерматит

Часто встречается первичная разновидность контактного дерматита. В месте длительного соприкосновения этого металла с кожей человека вначале возникает эритема, или очаги покраснения. Затем появляется огрубение кожного рисунка, возникает уплотнение кожи. Такой симптом в дерматологии называется лихенизацией, или лихенификацией. Затем появляются бугорки, или папулы

Эти симптомы аллергии на никель похожи на любой контактный дерматит, и очень важно выявить связь жалоб с металлическими деталями, натирающими кожу

Симптомы аллергии на никель

Можно легко выяснить причину дерматита, если окажется, что это ограниченное поражение в точности соответствует местам натирания кожи металлическими предметами. Это могут быть пряжки ремней, ювелирные украшения.

Гораздо более тяжелой является общая аллергическая реакция человеческого организма на поступление в него никеля, причём металл попадает внутрь через органы дыхания, при введении различных никельсодержащих металлических имплантатов, и такой общий генерализованный дерматит можно расценивать как системную реакцию организма. Поэтому вред использования спирали из никеля в качестве внутриматочного контрацептива может значительно превысить ее пользу.

При вторичном дерматите сыпь располагается симметрично, может захватывать всё тело, или локализоваться на отдельных участках, на локтевых сгибах, на лице, под коленками. Как и любой другой аллергический дерматит, вначале возникает сенсибилизация организма при первичном контакте с аллергеном, а затем, при повторной встрече, развиваются симптомы диффузного токсического дерматита. Общая схема симптомов никелевой аллергии показана ниже.

При длительном наблюдении рабочих – никелировщиков, отмечена экзема. На коже располагаются различные папулы с элементами отёков, пятна, пузырьки, хроническое мокнутие. По данным статистики, более 10% всех профессиональных поражений кожных покровов составляют никелевые дерматиты, а у сотрудников электролизных цехов частота никелевых поражений кожи доходит до 15%. Однако, встречаются и более редкие случаи никелевого дерматита. Например, у кассиров банков, которые по долгу службы часто считали монеты, изготовленные из сплавов этого металла, возникали симптомы контактного дерматита на пальцах.

Дерматит на никель

Симптомы и последствия дефицита

Учитывая, что микроэлемент широко распространен в продуктах питания, дневной рацион среднестатистического человека, как правило, содержит двойную дневную дозу полезного вещества (500 – 600 мкг).

Признаки дефицита никеля в организме:

  • снижение уровня гемоглобина, холестерина и гематокрита;
  • вялость, слабость в мышцах;
  • увеличение уровня сахара в крови;
  • изменение пигментации кожи;
  • уменьшение двигательной активности;
  • патологические изменения в печени.

Антагонистами никеля выступают сера, железо, цинк, витамин С, селен.

Длительный дефицит соединения способствует появлению дерматита, проблем с перикардом, укорочению нижних конечностей, задержке физического развития, снижает сопротивляемость организма заболеваниям.

Применение никеля:

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон
  1. https://en.wikipedia.org/wiki/Nickel
  2. https://de.wikipedia.org/wiki/Nickel
  3. https://ru.wikipedia.org/wiki/Никель
  4. http://chemister.ru/Database/properties.php?dbid=1&id=237
  5. https://chemicalstudy.ru/nikel-svoystva-atoma-himicheskie-i-fizicheskie-svoystva/

Примечание:  Фото https://www.pexels.com, https://pixabay.com

Найти что-нибудь еще?

карта сайта

никель атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решеткаатом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома электронные формулы сколько атомов в молекуле никелясколько электронов в атоме свойства металлические неметаллические термодинамические 

Коэффициент востребованности
1 809

Ищем никель по всему свету

Металл занимает пятое место по распространенности на Земле.

Геологи оценивают запасы никелевых руд в мире в 130-200 миллионов тонн.

Добыча ведется как открытым, так и подземным способами.

Можно было бы гордиться: на территории России объем добываемых руд самый большой в мире.

Извлекают эти руды в 22 странах; крупнейшие месторождения в странах:

  • Канада (провинция Онтарио);
  • Австралия (штат Западная Австралия);
  • Индонезия (3 карьера, но все принадлежат государству);
  • Новая Каледония (5 карьеров; три из них принадлежат французской фирме).

Потребляют металл в основном пять стран:

  • Китай;
  • Япония;
  • США;
  • Германия;
  • Тайвань.

Эти страны потребляют больше половины произведенного никеля.

Никелевые руды

Происхождением наш герой из магматических сульфидных медно-никелевых месторождений, кор выветривания — силикатных никелевых руд.

В состав медно-никелевых месторождений входят:

  • халькопирит;
  • пирротин;
  • гарниерит;
  • пирит;
  • ревдинскит;
  • магнетит;
  • никелин;
  • миллерит и другие минералы.

Силикатные никелевые руды можно разделить на железистые, с повышенным содержанием кобальта, и магнезиальные — в них больше никеля.

Как все металлы

Никель — металл. Поэтому имеет общие металлические свойства:

  • Ковкость;
  • Металлический блеск;
  • Пластичность;
  • Теплопроводность (небольшая);
  • Электропроводимость;
  • Упругость.

Физические свойства

Как простое вещество металл имеет блестящий светло-серебристый оттенок. Он устойчив к щелочной, водной, кислотной коррозии. Обладая пластичностью, ковкостью и собственными свойствами:

  • Температура плавления 1450 °С.
  • Температура кипения 2830 °С.
  • Теплопроводность 92 Вт/м.
  • Плотность 8,9 кг/дм3.

Оптические свойства металла

Для определения атомов элемента используют двунатриевую соль уксусной кислоты, антраниловую кислоту. Оптическую плотность измеряют Х=1000 ммк. Элемент находят в присутствии кальция, хрома, ртути, алюминия, циркония. Но невозможно найти с медью, железом (см. Железные руды – основа современного производства), кобальтом, висмутом, серебром. В отраженном свете имеет голубоватый цвет.

Исследования кристаллизации

Кристаллические тела – это металлы, сплавы. Их атомы располагаются в вершинах кристаллических решеток. В процессе кристаллизации образуются разные кристаллические решетки. Имеет гранецентрированную кубическую. Он образует две аллотропические модификации:

  • a-Ni при температуре ниже 245°С;
  • p-Ni.

Проведено исследование процесса кристаллизации жидкого никеля. Количество атомов в жидкости возрастает при понижении температуры. Сделан вывод, что сначала элемент имеет рыхлую структуру. Затем группы атомов восстанавливаются.