7 самых тяжелых элементов на земле

Содержание

Сталь – это чёрный или цветной металл?

Вопрос о принадлежности стали к чёрным или цветным металлам следует рассматривать исходя из классификации углеродистых сплавов, которая предусмотрена множеством ГОСТов.

Согласно разным нормативным документам, сталь подразделяется на следующие виды чёрных металлов:

  • низкоуглеродистые, углеродистые и высокоуглеродистые сплавы с содержанием углерода до 0,25; 0,25–0,6 и свыше 0,6 % соответственно;
  • низколегированные, среднелегированные и высоколегированные марки сплавов с контролируемым содержанием легирующих добавок до 2,5; от 2,5 до 10 и свыше 10 % соответственно;
  • конструкционную, инструментальную, быстрорежущую, коррозионно-стойкую, жаропрочную и другие виды стали для разных сфер применения.

Из всего обширного сортамента марок стали только семь наименований образуют группу немагнитных сплавов. Напоминаем, что отсутствие магнитных свойств является главным признаком цветных металлов. В то же время в состав немагнитных марок стали входит железо, что является одним из определяющих признаков чёрных металлов.

С учётом малочисленности группы немагнитных сталей их можно считать исключением из общего правила с не вполне определённым статусом. С обыденной точки зрения принято считать, что чёрные металлы – это такие сплавы, которые подвержены коррозии от атмосферных воздействий. Хотя ржаветь могут и высоколегированные сплавы.

Определения

В технологии (только цветные металлы ) и химии термин «тяжелый металл» включает металлы с плотностью> 5 г / см³. К ним относятся драгоценные металлы , неблагородные металлы, железо , медь , свинец , цинк , олово и никель, а также висмут , кадмий , хром и уран . Однако исследование IUPAC обнаружило по крайней мере 38 определений для обозначения «тяжелый металл», начиная от плотности , атомной массы или атомного номера до химических свойств или токсичности . Таким образом, списки «тяжелых металлов» различаются от одного набора руководящих принципов к другому; хотя часто и металлоиды такие. B. мышьяк включен. Этот термин часто используется без указания металлов, к которым он относится. По причинам, перечисленным выше, обозначение всех других металлов как легких металлов также не определено. В глазах общественности все вещества, обозначенные как «тяжелые металлы» (а также их соединения и сплавы), считаются токсичными. Следующие элементы имеют плотность более 5 г / см³:

4-й период Плотность [г / см³]
 
 
 
Ванадий 6.11
хром 7,14
марганец 7,47
железо 7 874
Кобальт 8,90
никель 8 908
медь 8,92
цинк 7,14
галлий 5 904
Германий * 5,323
Мышьяк * 5,72
 
 
5-й период Плотность [г / см³]
 
 
Цирконий 006,511
ниобий 008 570
молибден 10,28
Технеций 11,50
Рутений 12,37
Родий 12,45
палладий 12,023
Серебряный 10,49
кадмий 008,65
Индий 007.31
банка 007.31
Сурьма * 006,697
Теллур * 006,25
 
6 период Плотность [г / см³]
 
Лантан 006,146
гафний 13.31
Тантал 16,65
вольфрам 19,25
рений 21.03
осмий 22,59
иридий 22,56
платина 21,45
золото 19,32
Меркурий 13,55
Таллий 11,85
вести 11,34
Висмут 009,78
полоний 009.20
Астат * ** 006,35
7 период Плотность [г / см³]
радий 005,50
Актиний 10.07
Резерфордий 17,9 **
Дубний 00,? **
Сиборгий 00,? **
Бориум 00,? **
Калий 00,? **
Мейтнерий 00,? **
Дармштадтиум 00,? **
Рентгений 00,? **
Копернициум 00,? **
Nihonium 00,? **
Флеровий 00,? **
Московиум 00,? **
Ливерморий 00,? **
 
Лантаноиды Плотность [г / см³]
 
 
церий 6,689
Празеодим 6,64
Неодим 6 800
прометий 7,264
Самарий 7,353
Европий 5,244
Гадолиний 7.901
Тербий 8 219
Диспрозий 8,551
гольмий 8,80
Эрбий 9,05
Тулий 9,321
иттербий 6 965
лютеций 9 841
Актиноиды Плотность [г / см³]
 
 
Торий 11,72
Протактиний 15,37
уран 18,97
нептуний 20,48
плутоний 19,74
Америций 13,67
Кюрий 13,51
Берклиум 14,78
Калифорний 15.10
Эйнштейний ** 008,84
Фермий 00? **
Менделевий 00? **
Нобелий 00? **
лоуренсий 00? **

* Полуметаллы
** Поскольку эти элементы не могут быть синтезированы в измеримых количествах, многие из их свойств, таких как плотность, невозможно измерить. Однако модельные расчеты предполагают диапазоны значений этих величин.

В таблице представлены элементы плотностью от 5 г / см³. Элементы с известной плотностью от 5 до 10 г / см³ имеют желтый фон, от 10 до 20 г / см³ оранжевый и более 20 г / см³ коричневый.

Самый дорогой металл

Многие люди инвестируют в металлы и одним из самых дорогих сегодня является золото. По курсу за июнь 2020 года, грамм золота стоит около 4000 рублей, тогда как цена той же массы платины еле достигает 2000 рублей. Чуть выше мы уже выяснили, что добывать золото из ртути — это очень дорогой процесс. Поэтому, получением золота занимаются работники аффинажных заводов — грубо говоря, они извлекают золота из смесей других металлов.

Золото уже тысячелетиями сводит людей с ума

Так как персонал работает с очень дорогим металлом, в заводах действует строгий контроль. Если у человека, например, есть золотой зуб — охрана всегда проверяет, находится ли он на месте. А то вдруг человек избавится от золотого зуба и решит пронести кусочек драгоценного металла, поместив его в освободившемся пространстве между зубами? В некоторых аффинажных заводах работники проходят внутрь голыми и облачаются в рабочую одежду внутри.

Manapart — Manapart

Питерскую группу Manapart очень легко описать — это музыка для тех, кто отчаялся дождаться новый диск System of a Down. Альбом у банды пока всего один, зато какой! В настроение SOAD он попадает даже лучше вышедшего недавно сольника Сержа Танкяна, даже несмотря на то, что состоял он из написанных для «Системы» песен. Группа не просто попала в атмосферу (и восточную этнику во всех партиях) — у вокалиста Manapart даже голос максимально похож на пение Сержа Танкяна. Но даже если отойти от сравнений с SOAD, диск Manapart — это просто очень крепкий, динамичный метал-альбом, который хочется переслушивать.

Титан

Это легкий металл. Он не магнитен. Имеет серебристый цвет с отливом голубоватого тона. Обладает высокой прочностью и устойчивостью к коррозии. Но у титана маленькая электропроводность и теплопроводность. Теряет механические свойства при температуре 400 градусов, приобретает хрупкость при 540 градусах.

Механические свойства титана повышаются в сплавах с молибденом, марганцем, алюминием, хромом и другими. В зависимости от легирующего металла, сплавы имеют разную прочность, среди них есть и высокопрочные. Такие сплавы применяются в самолетостроении, машиностроении, судостроении. Из них производят ракетную технику, бытовые приборы и многое другое.

Определение тяжелых металлов в зольном остатке органических лекарственных средств

Испытуемый раствор. Зольный остаток, полученный после сжигания 1,0 г (если не указано иначе в фармакопейной статье) испытуемого образца в присутствии серной кислоты концентрированной, обрабатывают при нагревании на сетке 2 мл насыщенного раствора аммония ацетата, нейтрализованного раствором натрия гидроксида, прибавляют 3 мл воды и фильтруют в пробирку через беззольный фильтр, предварительно промытый 1 % раствором уксусной кислоты, а затем горячей водой. Тигель и фильтр промывают 5 мл воды, пропуская её через тот же фильтр в ту же пробирку.

Эталонный раствор. В тигель помещают серную кислоту концентрированную в количестве, взятом для сжигания испытуемого образца, и далее поступают как с испытуемым образцом, но промывание тигля и фильтра производят лишь 3 мл воды, после чего к фильтрату прибавляют 2 мл стандартного раствора свинец-иона (5 мкг/мл).

Контрольный раствор. Готовят так же, как и испытуемый раствор, но без испытуемого образца.

Далее определение проводят любым из описанных выше методов определения тяжелых металлов в растворах лекарственных средств.

Примечание. Определению тяжелых металлов из зольного остатка наличие солей железа в препаратах не мешает.

Стандартные растворы свинец-иона

Стандартный раствор 100 мкг/мл свинец-иона. 0,0799 г свинца нитрата помещают в мерную колбу вместимостью 500 мл и растворяют в 50 мл воды с добавлением 0,5 мл азотной кислоты концентрированной, доводят объем раствора водой до метки и перемешивают.

Стандартный раствор 5 мкг/мл свинец-иона. 5,0 мл стандартного раствора свинец-иона (100 мкг/мл свинец-иона) помещают в мерную колбу вместимостью 100 мл, доводят объем раствора водой до метки и перемешивают. Срок хранения 1 сут.

Приведенные выше методы не являются селективными и могут быть использованы только для определения предельного суммарного содержания перечисленных тяжелых металлов в лекарственных средствах.

Для количественного определения отдельных ионов следует использовать следующие методы:

  • атомно-абсорбционную спектрометрию;
  • атомно-эмиссионную спектрометрию с индуктивно связанной плазмой;
  • масс-спектрометрию с индуктивно связанной плазмой.

Методики количественного определения тяжелых металлов в лекарственных средствах должны быть валидированы и описаны в фармакопейной статье.

Скачать в PDF ОФС.1.2.2.2.0012.15 Тяжелые металлы

Свойства щелочных металлов

Цвет всех щелочных металлов – белый, с серебристым оттенком. Исключением является цезий, имеющий серебристо-желтый цвет. Щелочные металлы можно резать простым скальпелем, так как у них низкая твердость. Также они имеют малую плотность – от 534 кг/м3 у лития до 1900 кг/м3 у цезия. Литий, калий и натрий настолько легкие, что они плавают в воде, но построить корабль из них не получится, так как вода быстро окисляет и разрушает эти металлы. Франций и цезий плавятся уже при комнатной температуре, а самый тугоплавкий щелочной металл – это литий, плавящийся при 180,6°С.

Для защиты щелочных металлов от воздуха и волы их хранят в керосине. При реагировании лития с водой выделяется водород, а натрий и особенно калий просто взрываются в воде. При взаимодействии с кислородом образуются оксиды.

Классификация и сферы применения цветмета

По физическим свойствам цветмет подразделяется на тяжелые и легкие металлы. Сфера использования обоих видов обусловлена свойствами цветных металлов: износостойкостью, легкостью на фоне прочности, пластичностью, устойчивостью к коррозии.

Тяжелые цветные металлы

Данный вид цветмета включает пять названий.

Медь

Номер один в цветмете. Самый распространенный плюс повышенная пластичность, тепло- и электропроводность. Формирует сплавы почти со всеми металлами. Самые популярные – бронза (с оловом), латунь (с цинком), красное золото.

Самородная медь

Свинец

Самый тяжелый из цветмета, плотный сизовато-серый.

Мягкий (1,5 из 10 по Моосу), режется вручную, царапается ногтем, легко прокатывается до фольги.

Тепло- и электропроводность ниже средних: у меди, например, на порядок больше. Плюс малая стойкость к вибрациям, беззащитность перед гниющей органической массой, растворами извести, бетона.

Идет на аккумуляторы, основу и покрытие проводов, кабелей, электроды, боеприпасы.

Цинк

Легкоплавкий цветмет со сменными свойствами: хрупок при обычной температуре, пластичен при нагреве. Равнодушен к ржавлению, разрушается кислотами либо щелочами.

Используется машиностроителями, металлургами как покрытие железа для предотвращения коррозии.

Олово

Серебристо-белый умеренно блестящий тяжелый металл.

Востребован как компонент сплавов для подшипников, припоев.

Расплавленное олово

Самый экологически чистый в «тяжелом» сегменте цветмета, поэтому используется не только промышленностью, но и в быту (например, как материал крышек для консервации).

Никель

Серебристо-белый с желтоватостью цветмет. Один из лучших катализаторов, обязательный компонент нержавеющих сталей, повышающий химическую стойкость.

Востребован изготовителями щелочных аккумуляторов (в том числе для электромобилей) и емкостей для химически агрессивных веществ.

Легкие цветные металлы

Сегмент легких цветных металлов состоит из трех позиций.

Алюминий

Серебристый цветмет – суперпроводник электричества, пластичен. Механические параметры оставляют желать лучшего, поэтому добавляется к сплавам. Они прочны, легки, невосприимчивы к коррозии, большинству агрессивных сред, термовоздействию.

Используется как материал корпуса изделий авиа-, морских судов, электропроводов.

Титан

Блестящий серебристый с голубоватым отливом материал. Легок, прочен, устойчив к коррозии, вязок. Пластичен, хрупким становится при -80°C или большом проценте примесей.

Стержень, состоящий из титановых кристаллов высокой чистоты

По прочности цветмет сопоставим со сталью, но вполовину легче. Вдвое прочнее алюминия, однако массивнее всего наполовину. За это ценится строителями ракет, самолетов, судов, нефтяниками.

Заготовка титанового шпангоута истребителя F-15 до и после прессования на штамповочном прессе компании Alcoa усилием 45 тыс. тонн, май 1985

Магний

Легкое красивое блестящее вещество.

Благодаря малой плотности цветмет хорошо обрабатывается, устойчив к жару, большинству горючих веществ.

Металлический магний

Однако требует осторожности. В нагретом воздухе сгорает с ярким свечением

Смесь порошка с марганцовкой, другими окислителями порождает взрыв.

Виды и состав

Соли тяжелых металлов — это вещества, которые способствуют загрязнению окружающей среды. Элементы отрицательно воздействуют на здоровье. В профессиональных целях применяются в медицинской и металлургической области. В природе насчитывается около 40 видов. Однако в повседневной жизни встречаются не все.

Ртуть

В земной коре содержится в малом количестве: показатель равен 10-6% (масс.). Очень редко встречается как самородок, вкрапленный в горные породы. В природе представлен как сульфид ртути HgS ярко-красного цвета.

Является единственным металлом, который может пребывать при комнатной температуре в жидком состоянии. Простое вещество окрашено в серебристый цвет. Металл отличается легким плавлением. Плотность составляет 13,55 г/см 3.

Свинец

Свинец является тяжелым и плотным металлом, который окрашен в голубовато-серый цвет. При контакте с воздухом утрачивает блеск и покрывается пленкой на основе оксида. Свинец встречается в природе часто и подлежит легкой добыче, что объясняет его давнюю известность.При высоком показателе плотности сохраняет мягкость. При температуре 20 °С легко царапается.

Мышьяк

Мышьяк отличается хрупкостью. Металл окрашен в серый цвет. Обладает ромбоэдрической кристаллической решеткой. При нагревании до 600 °С сублимирует. После охлаждения паров образуется новое соединение — желтый мышьяк. При температуре свыше 270 °С все формы As превращаются в черный мышьяк.

Кадмий

Кадмий похож свойствами на цинк. Обычно содержится в качестве примеси в цинковых рудах.


Показатель содержания в земной коре составляет коло 10-5% (масс.). Металл окрашен в серебристо-белый цвет. Отличается мягкостью, ковкостью и тягучестью. При гидролизе соли проявляют кислую реакцию.

Висмут

Элемент встречается в природе редко. Содержание в земной коре составляет 0,00002% (масс.). В природе можно встретить как в свободном состоянии, так и в виде соединений. В свободном состоянии элемент окрашен в розовато-белый цвет. Показатель плотности составляет 9,8 г/см 3. Металл отличается хрупкостью. Под воздействием воздуха и при комнатной температуре не окисляется.

Медь

Медь в чистом виде представляет металл, который характеризует тягучесть и вязкость. Легко прокатывается в тонкие листы. Является проводником тепла и электрического тока. При сухости воздуха не меняет свое свойство, так как оксидная пленка, образующаяся на поверхности, служит барьером от окисления. При воздействии воды и диоксида углерода покрывается налетом зеленого цвета.

Никель

Металл обладает серебристым цветом и желтым оттенком. Притягивается посредством магнита. Проявляется устойчивость к коррозии, воздействию воздуха, воды и щелочей. Химическая стойкость объясняется способностью образовывать пленки оксида.

Сурьма

Обычно в природе сурьма встречается в соединении с серой. Показатель содержания в земной коре составляет 0,00005% (масс.)


Сурьма представляет кристаллы серебристо-белого цвета, обладающие блеском. Показатель плотности равен 6,68 г/см 3. Кристаллическому элементу присуща хрупкость и плохая проводимость тепла и электричества.

Талий

Голубовато-белый металл, отличающийся ядовитостью. Элементу присуща мягкость и быстрое окисление при попадании в атмосферу. Содержание в воздухе не должно быть выше 0,004 мг/м. Для воды опасным показателем является 0,0001 мг/м. В природе указанные значения обычно не превышены.

Кобальт

В природе кобальт встречается крайне редко. Содержание в земной коре составляет 0,004% (масс.). Чаще металл соединен с мышьяком. Он отличается твердостью и тягучестью.

Марганец

Марганец является часто встречаемым элементов. Составляет 0,1% (масс.) земной коры.


Представляет хрупкий и твердый металл серебристого цвета. Показатель плотности равен 7,44 г/см 3, а температура плавления составляет 1245 °С.

Хром

Металл характеризует твердость. Он окрашен в серый цвет, блестит и поддается полировке.


Используется в сплавах нержавеющей стали. Человеческий организм нуждается в низком количестве хрома для метаболизма сахара. Хром является высокотоксичным.

Откуда берутся тяжелые металлы?

Породы магматического и осадочного происхождения

Основным природным источником загрязнения тяжелыми металлами являются разные породы магматического и осадочного происхождения. Многие минералы, содержащие эти элементы, могут быть примесями в другие горные породы. В эту группу входят: минералы хрома (Fe2Cr2O4) и титана (анатаз, ильменит, брусит). Соединения этой категории химических элементов могут попасть в атмосферу из космоса (с космической пылью), и из недр нашей планеты (с помощью вулканических газов).

Антропогенное загрязнение

Важным фактором поступления тяжелых металлов в окружающую среду является антропогенное загрязнение. Промышленность цемента, черная и цветная металлургия, из-за технологических процессов при большой температуре, выбрасывает очень большое количество этих элементов в нашу среду обитания. Эти загрязнители могут проникнуть и в наши продукты питания, если орошение полей проводилось водами содержащие большую концентрацию таких химических элементов (например, бытовые сточные воды). Это случается по мотиву, что одни из них считаются микроэлементами. Конечно, не только так эти металлы попадают в водоёмы. Если рядом с вашим местом обитания есть металлургические предприятия, рудники, или на ваши поля вносится большое количество минеральных удобрений с содержанием цинка, меди, железа, молибдена, то они могут попасть в подземные воды благодаря дождям, таянью снега. Так что я вам советую провести контроль качества воды на содержания в местности тяжелых металлов, если вы хотите выкопать колодец.

Не только локальная антропогенная активность может повлиять на вырастание содержания тяжелых металлов в атмосфере. В виде аэрозолей, эти химические элементы могут быть перенесены на многие десятки, сотни, да и тысячи километров от места их выброса в атмосферу. Также тяжелые элементы они могут накапливаться на дне бессточных водоемов в отложениях. Часть их содержания образуют нерастворимые карбонаты, сульфаты, а также входят в состав минеральных и органических осадков. Таким образом, содержание тяжелых металлов в отложених водоёмов растёт, но если отложения перенасыщены этими металлами, то они попадут назад в воду и тогда будет «двойной удар». Почему так? Да потому что, мы ещё не почувствовали глобально эффект от сильного загрязнения такими элементами. Вот когда, эти отложения со дна водоёмов утратят способность связывать их, то «вернут» части этих элементов назад в воду и тогда мы будем искать пригодную воду где-то в другом месте. Особо затруднительная ситуация создалась вблизи автострад. Там почва накопила столько свинца, кадмия и цинка что положительных прогнозов не ожидается.

Виды и характеристики

Сами редкие металлы разделены на пять больших групп:

  • Лёгкие: бериллий, литий, рубидий, стронций, цезий.
  • Радиоактивные: актиний, радий, торий, уран и трансурановые элементы.
  • Рассеянные металлы: галлий, гафний, германий, индий, рений, селен, таллий, теллур.
  • Редкоземельные: иттрий, лантан и лантаноиды, скандий.
  • Тугоплавкие металлы: ванадий, вольфрам, молибден, ниобий, тантал, цирконий.

Данное подразделение весьма условно, так как с совершенствованием геологоразведки и развитием промышленности, некоторые металлы уходят из разряда редких элементов. Само понятие «редкости» говорит об их незначительном использовании. Однако новые прогрессивные технологии коренным образом меняют ситуацию.

Источниками получения редких металлов могут служить месторождения, высокоминерализованные воды, рапа солёных озёр, россыпи, а также побочная продукция или отходы основных производств. Редкометаллические руды можно подразделить на непосредственно богатые редкими элементами, и руды других элементов, в которых редкие минералы присутствуют как примеси. Среди комплексных руд можно выделить:

  • вольфраммолибденовые,
  • титан-ниобий-тантал-редкоземельные,
  • уран-ванадиевые,
  • литий-цезиевые,
  • цирконий-ниобиевые.

Примерами непосредственно руд редких металлов являются:

  • Литиевые руды – это сподумен, амблигонит, лепидолит, циннвальдит, петалит.
  • Бериллиевые руды – берилл, бертрандит, фенакит.
  • Титановые руды – ильменит, рутил, ильменорутил, перовскит, сфен.
  • Циркониевые руды – бадделит, циркон.

Мышьяк (As)

Загрязнены мышьяком в основном районы, которые находятся близко к минеральным рудников с высоким содержанием этого элемента (вольфрамовые, медно-кобальтовые, полиметаллические руды). Очень малое количество мышьяка может произойти при разложении живых организмов. Благодаря водным организмам, он может усваиваться этими. Интенсивное усваивание мышьяка из раствора замечается в период бурного развития планктона.

Важнейшими загрязнителями мышьяком считаются обогатительная промышленность, предприятия по производству пестицидов, красителей, а также сельское хозяйство.

Озера и реки содержат мышьяк в два состояния: во взвешенном и растворённом. Пропорции между этими формами может меняться в зависимости от рН раствора и химической композиции раствора. В растворённом состоянии, мышьяк может быть трехвалентном или пятивалентном, входя в анионные формы.

Уровень мышьяка в природных водоёмах

В реках, как правило, содержание мышьяка очень низкое (на уровне мкг/л), а в морях — в среднем 3 мкг/л. Некоторые минеральные воды могут содержать большие количества мышьяка (до несколько миллиграммов на литр).

Больше всего мышьяка могут, содержат подземные водохранилища — до несколько десяток миллиграммов на литр.

Его соединения очень токсичны для всех животных и для человека. В больших количествах, нарушаются процессы окисления и транспорт кислорода к клеткам.

Способы производства

Для производства цветных металлов и сплавов применяется разнообразные методы, основанные на химических свойствах основы, из которой будет получен металл или сплав и реагента.

Пирометаллургия – метод получения цветного металла путем проведения избирательной плавки, которая может быть окислительной или восстановительной. Источником тепла и главным реагентом чаще всего выступает присутствующая в руде сера.

Электролиз – метод, основанный на химической реакции электролиза. Применяется катод и анод. На катоде, которым выступает ванна из огнеупорного материала, происходит осаждение ионов металла в результате диссоциации. Реакция, в отличие от традиционной, описанной в учебниках химии, проводится не в водной среде, а в расплаве. Это обуславливается необходимостью избежать осаждения на катоде ионов водорода, что не позволяет выделять чистый металл.

Металлотермия – метод восстановления хлоридов или оксидов металла под воздействием другого вещества. Преимущественно технология применяется при производстве титана. Параллельно добывается магний, поскольку хлорид магния выступает побочным продуктом.

Сплавление – этот способ заключается в прямом смешивании двух металлов. Дополнительно в жидком состоянии поставляется шихта или легирующий материал. Этот способ относится к наиболее производительным, менее затратным и позволяет получать незагрязненные металлы., имеющие заданные физико-химические свойства.


Литье металла

Тяжелые металлы — загрязнители природной среды

Главный источник тяжелых металлов – промышленность. Выбросы проникают в водоемы, атмосферу, почву, а из нее – в сельхозкультуры. Самые токсичные – свинец, ртуть, мышьяк, кадмий и хром.

Ртуть

Ртути присвоен I класс опасности. Ее естественное состояние в земной коре – безвредные сульфидные остатки, но вследствие атмосферных процессов возникло загрязнение мирового океана. В нем было обнаружено 50 млн. т ртути. Если 5 000 т/год – естественный вынос, то еще столько же – результат деятельности человека.

В мире создается свыше 10 000 т ртути в год. В океане ртуть под воздействием анаэробов превращается в метилртуть и диметилртуть, опасные для всего живого. Метилртуть с кровью поступает в мозг, разрушая его, проникает в плаценту. При проглатывании и вдыхании паров металлической ртути чернеют и крошатся зубы. Ртутные соли просачиваются сквозь кожу, разъедая ее и слизистые.

Свинец

Свинцу присвоен I классу опасности. Он выделяется при выплавке из руды. Каждый год в мире используется до 180 000 т свинца, а наибольшее загрязнение наблюдается на автомобильных выхлопных газах. При движении машины в атмосферу выбрасывается свинец содержащийся в бензине. Основная масса оседает на землю, но часть остается в воздухе.

Еще свинцовая пыль покрывает почву в промышленных зонах. Другие источники загрязнения – угольные электростанции и бытовые печи, глиняная посуда с глазурью, красящие пигменты.

Неорганические соединения свинца расстраивают метаболизм, металл может замещать кальций в костях. Органические еще более токсичны.

Кадмий и цинк

1 млн. кг кадмия ежегодно выбрасывается в атмосферу вследствие его выплавки. Это 45% общего загрязнения. Другие 55% – следствие сжигания или переработки кадмийсодержащих изделий. Заводы по выплавке цинка – крупнейшие источники загрязнения данным металлом. Оба элемента проникают в водоемы, попадают в рыбу, скапливаются в печени и почках.

Значительные загрязнения цинком обнаруживаются вблизи автомагистралей. Источником загрязнения кадмием также являются удобрения. Элемент внедряется в растения, используемые в пищу, и отравляет организм. При этом кадмий намного токсичнее цинка, ему присвоен I класс опасности. Вдыхание воздуха, в котором его больше 5 мг/м3, в течение 8 ч. чревато смертью.

Сурьма, мышьяк, кобальт

Каждый год в мире производится около 70 т сурьмы. Она входит в состав сплавов, применяется для изготовления спичек, а в чистом виде идет на полупроводники. Хроническое отравление нарушает функции ЖКТ.

У мышьяка II класс опасности, он летучий и легко попадает в воздух. Сильнейшие источники загрязнения – гербициды, фунгициды и инсектициды. Элементарный мышьяк – слабый яд, но нарушает развитие плода. Отравление вызывает болезни ЦНС, изменения печени, атрофию костного мозга.

Кобальт задействуют в сталелитейном деле, изготовлении полимеров. Это элемент I класса опасности.

Медь и марганец

Медь относится ко II классу опасности. По воде и воздуху металл переносится на огромные расстояния. Аномальным содержание меди в почвах и растениях остается на расстоянии больше 8 км от плавильного завода. Ее излишки откладываются в тканях мозга, коже, печени, поджелудочной. Она провоцирует болезнь Вильсона.

У марганца тоже II класс опасности. Источники загрязнения – производства легированной стали, сплавов, электробатарей. Превышение нормы марганца в воздухе разрушает ЦНС.